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Introduction

The prime numbers underlie much of early and advanced mathematics. (Oh boy...here we go again with
primes.) Thus it is natural to try to predict when prime numbers will occur. Mathematicians have made
estimates about prime number spacing, but we have decided that the distribution of prime numbers is
fairly random. One (not me) might ask: Is there a function with natural number inputs whose outputs are
the prime numbers? In this worksheet, we will explore the importance and limitations of a few examples
of prime generating polynomials.

Can Polynomials Generate Prime Numbers?

In 1772, Euler noticed that, for n a natural number, the function f(n) = n2 + n+ 41 generates a good
number of primes. However, we will show in this section that Euler was wasting his time. In other words,
polynomials are not going to be perfect prime generating functions.

Problem 1. (a) Compute f(0), f(1), and f(2). Are they prime numbers? Make a guess as to how
long f outputs prime numbers.

(b) Show that f is increasing on natural number inputs.
(c) Does f skip any prime numbers? If so, find the first instance of a missing prime.
(d) Show that f(40) is not prime without computing the actual output.

It turns out that f is prime for all 0 ≤ n ≤ 39. After that, it is composite frequently. If you
test polynomials for their ability to generate prime numbers, you’ll find that they often output composite
numbers. (So why are we still doing this worksheet?) The following exercise will make this claim rigorous.

Problem 2. We will show that no non-constant polynomial f can be prime for all natural number inputs.

(a) Assume that f is a polynomial that is prime for all natural inputs. Let p = f(1), which is assumed
to be prime. Show that f(1 + kp) is divisible by p for all natural numbers k.

(b) What is f(1 + kp) for all natural numbers k?
(c) Conclude that f must be constant.

Dirichlet’s Theorem

Even though polynomials cannot always output prime numbers, there are many instances of polynomials
that generate infinitely many prime numbers. As a simple example, take f(n) = n. Since f generates all
natural numbers, it generates all prime numbers. (Wow, that was such a sick example. I am fully into
this section now.)

Recall that the greatest common divisor of two integers a and b is the largest integer that divides both
a and b. Two numbers are relatively prime if their greatest common divisor is 1. The following theorem
is an important result in number theory.

Theorem 1 (Dirichlet’s Theorem). For any two relatively prime numbers a and b, the function f(n) =
an+ b will be prime infinitely often.

Problem 3. (a) Explain why Dirichlet’s Theorem holds for a = 2 and b = 1.
(b) Prove that Dirichlet’s Theorem holds for a = 4 and b = 3.
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(c) (Challenge) Prove that Dirichlet’s Theorem holds for a = 8 and b = 3. (Hint: Try a quadratic
formulation.)

(Okay, maybe I misjudged the section.) A result like Dirichlet’s Theorem is not known for polynomials of
higher degrees although there is a conjecture. The next problem develops the key pieces of the conjecture.

Problem 4. Assume that f is a polynomial where f(n) is a prime number infinitely often.

(a) Show that the leading coefficient of f is positive.
(b) Show that f cannot be factored as the product of two integer coefficient polynomials.
(c) Show that the greatest common divisor of f(1), f(2), f(3), . . . is 1. Note that this condition implies

the coefficients of f have greatest common divisor 1.

Problem 5. In Dirichlet’s Theorem, the coefficients of the polynomial only needed to be relatively prime.
However, in Problem 4, condition (c) is stronger than just having the coefficients have greatest common
divisor 1. Show that f(n) = n2+n+2 does not generate infinitely many primes even though its coefficients
are relatively prime.

Conjecture 1 (Bunyakovsky’s Conjecture). A polynomial that satisfies (a), (b), and (c) in Problem 4
will generate infinitely many primes.

Divisibility Results

Since it is apparently difficult to say when polynomials generate infinitely many primes, we will weaken
the question in the next problem.

Problem 6. Show that for a non-constant polynomial f , the set of prime numbers dividing f(n) for some
natural number n is infinite.

(a) Suppose that the set of prime numbers dividing f(n) for some natural number n is finite, say
p1, ..., pk. Let f(x) = anx

n + ... + a1x + a0. Show that there is no natural number m such that
f(m) = 0, that is, f has no natural roots. Conclude that a0 6= 0.

(b) Show that a0 is a product of the prime numbers in our set, a0 = pα1
1 · · · p

αk
k .

(c) Show that a0 6= 1.
(d) It follows that we can write a0 as pα1

1 · · · p
αj
j where the αi > 0 (this is just the prime factorization

of a0). Let N = a0 · p1 · p2 · · · pk. Show that a0 divides f(N). Do any of the pi divide f(N)
a0

? What

can we conclude if f(N)
a0
6= 1?

(e) Use the fact that every polynomial has a finite number of roots to conclude that
f(ai0N)
a0

6= 1 for
some natural number i. Show that this contradicts our original assumption that only finitely many
primes divide f(n) for some natural number n.

(f) Write up the entire proof from beginning to end.

The last problem showed that any non-constant polynomial is divisible by infinitely many primes. This
next problem will show that no prime larger than the degree of the polynomial divides the polynomial at
every value unless it divides all of the coefficients.

Let p be a prime and Fp = {0, 1, ..., p− 1} be the remainders modulo p. Recall that every integer has
a unique representative in Fp. For example, if p is 2, then every even number is represented by 0 and
every odd number is represented by 1. Moreover, we can multiply and add elements of Fp by doing so
as we would for integers and then reducing at the end. For example, in F2, we have 1 + 1 = 0 since 2 is
represented by 0.

Definition 1. A polynomial f(x) with integer coefficients is said to be over the field Fp if it is viewed as
outputting elements of Fp.

For example if p = 3, then the polynomial 5x2 + 2x− 4 is the same as 2x2 + 2x+ 2 when viewed over
Fp. This is because 5x2 + 2x− 4 = 2x2 + 2x+ 2 + 3x2 − 6 ≡ 2x2 + 2x+ 2 mod 3.

Problem 7. Let p be a prime and f be a non-constant polynomial over Fp of degree k < p.
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(a) We say that a is a root of f if f(a) ≡ 0 mod p. Also, we say that a polynomial g divides f if there
exists a polynomial h such that g(x)h(x) = f(x). Show that if a is a root of f , then x− a divides

f(x). What can you say about the degree of f(x)
x−a? (Hint: Remember how this works over the real

numbers.)
(b) Use part (a) to show that a non-constant polynomial of degree k over Fp has at most k roots.
(c) Let f(x) now be a non-constant polynomial of degree k with integer coefficients (not over Fp).

Show that no prime number greater than k can divide f(n) for every natural number n unless
that prime divides all the coefficients. (Hint: Reduce modulo p.)

Extra, Extra, Read All About It: A Large Class of Dirichlet’s Theorem

In this section, we will prove that Dirichlet’s Theorem holds for any a and b = 1. (Thank goodness...I
have been wondering about this case all day). First, however, we will need to introduce the idea of a
cyclotomic polynomial.

Definition 2. We know that xn − 1 has n distinct roots,
{
e

2πik
n

}n−1
k=0

, over the complex numbers. The

nth cyclotomic polynomial Φn(x) is the product of all
(
x− e

2πik
n

)
where k and n are relatively prime.

Note that Φn(x) is monic or, in other words, has leading coefficient 1 for all n.

Problem 8. Show that xn − 1 =
∏
d|n Φd(x).

Problem 9. (a) Find Φ4(x).
(b) Find Φ6(x).
(c) Find Φp(x) for p prime.

Problem 10. (a) Prove by induction that Φn(x) has integer coefficients for each n.
(b) Show that the constant term of Φn(x) is ±1 for all n.

Definition 3. Let f(x) = anx
n + an−1x

n−1 · · ·+ a1x+ a0 be a polynomial with integer coefficients. We
mimic the power rule in defining the formal derivative of f as f ′(x) = nanx

n−1 +(n−1)an−1x
n−2 · · ·+a1.

The formal derivative is a purely algebraic definition, but it satisfies the typical rules of the differentiation.

Problem 11. Show that if a polynomial f has a multiple root c, then f ′ will have c as a root.

Problem 12. We are now ready to prove the main result of the section. This will require background in
modular arithmetic and group theory.

(a) Show that Φn(x) is greater than 1 for large enough x.
(b) Let p be a prime that does not divide n. Let m|n with m 6= n. Prove that Φn(x) and xm − 1 do

not have a common root modulo p. (Hint: Use Problem 11.)
(c) Fermat’s Little Theorem states that Np−1 ≡ 1 (mod p) for any N . Let k be the smallest integer

for which Nk ≡ 1 (mod p). We have proven in other worksheets that k must divide p− 1. Using
these facts, prove that there are infinitely many primes of the form an+ 1 for any a.

Definition 4. An integer coefficient polynomial h(x) is Euclidean for b modulo a if the prime factors of
h(N) for integers N are either congruent to 1 or b modulo a with finitely many exceptions.

Problem 13. Identify the relevant Euclidean polynomials from Problems 3 and 12.

We see that many cases of Dirichlet’s Theorem can be proven using Euclidean polynomials. (Yeah
I’m pretty sure that’s the only way to go with these problems.) Interestingly, not all cases of Dirichlet’s
Theorem can be proven using Euclidean polynomials. (Okay never mind.) Proving the following results
is well beyond the scope of this worksheet, but they are extremely intriguing.

Theorem 2. [Schur, 1912] If b2 ≡ 1 (mod a), then a Euclidean polynomial exists for b modulo a.

Theorem 3. [Murty, 1988] If a Euclidean polynomial exists for b modulo a, then b2 ≡ 1 (mod a).

Problem 14. Find the values of b for which Euclidean polynomials exist modulo 5. Come up with the
corresponding Euclidean polynomials.
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